
Dynamic Timeouts and Neighbor Selection Queries
in Peer-to-Peer Networks

Wolfgang Hoschek
CERN IT Division

European Organization for Nuclear Research
1211 Geneva 23, Switzerland

wolfgang.hoschek@cern.ch

ABSTRACT
In a Peer-to-Peer (P2P) network, non-pipelining query
result set delivery without a dynamic abort timeout fea-
ture is highly unreliable due to what we propose as the
simultaneous abort problem: If only one of the many
nodes in the query path fails to be responsive for what-
ever reasons, all other nodes in the chain are waiting,
eventually time out at the same time, and the originator
receives not even a single result. To address the prob-
lem, we derive dynamic abort timeouts using as policy
exponential decay with halving. This ensures that a max-
imum of results can be delivered reliably within the time
frame desired by a user. We establish that a timeout for
loop detection in query routes must be static. A dynamic
timeout is unsuitable to be used as loop timeout, due to
what we propose as the non-simultaneous loop timeout
problem.

In a P2P network, a node forwards a query to the set
of nodes obtained from neighbor selection. Using neigh-
bor selection, explicit topology characteristics can be ex-
ploited in query guidance. The best neighbor selection
policy to adopt depends on the context of the query and
the topology. For flexibility and expressiveness, we pro-
pose to allow the user to specify the selection policy. In
addition to the normal query, the user defines a neighbor
selection query (XQuery) that takes the tuple set of the
current node as input and returns a subset that indicates
the nodes selected for forwarding. A wide range of poli-
cies can be implemented in this manner, as the neighbor
selection policy can draw from the rich set of information
contained in the tuples published to the node.

KEY WORDS
Peer-to-Peer Networks, Messaging, Service Discovery

1. Introduction

In a large distributed system such as a Peer-to-Peer (P2P)
file sharing system [1, 2] or a Grid [3], it is desirable
to maintain and query dynamic and timely information
about active participants such as services, resources and
user communities. Other examples are a (worldwide)
service discovery infrastructure for a multi-national orga-
nization, the Domain Name System (DNS), the email in-
frastructure, a monitoring infrastructure for a large-scale
cluster of clusters, or an instant messaging and news
service. For example, the European DataGrid (EDG)

[4, 5, 6] is a software infrastructure that ties together
a massive set of globally distributed organizations and
computing resources for data-intensive physics analysis
applications, including thousands of network services,
tens of thousands of CPUs, WAN Gigabit networking as
well as Petabytes of disk and tape storage [7].

An enabling step towards increased Internet and
Grid software execution flexibility is the web services vi-
sion [4, 8, 9] of distributed computing where programs
are no longer configured with static information. Rather,
the promise is that programs are made more flexible and
powerful by querying Internet databases (registries) at
runtime in order to discover information and network at-
tached third-party building blocks. Services can adver-
tise themselves and related metadata via such databases,
enabling the assembly of distributed higher-level compo-
nents.

In support of this vision we have introduced the
Web Service Discovery Architecture (WSDA) [10] and
given motivation and justification [11] for the assertion
that realistic ubiquitous service and resource discovery
requires a rich general-purpose query language such as
XQuery [12] or SQL [13]. Based on WSDA, we in-
troduced the hyper registry [14], which is a centralized
database (node) for discovery of dynamic distributed
content.

However, in an Internet discovery database system,
the set of information tuples in the universe is parti-
tioned over one or more distributed nodes (peers), for
reasons including autonomy, scalability, availability, per-
formance and security. It is not obvious how to enable
powerful discovery query support and collective collabo-
rative functionality that operate on the distributed system
as a whole, rather than on a given part of it. Further, it is
not obvious how to allow for search results that are fresh,
allowing time-sensitive dynamic content.

It appears that a Peer-to-Peer (P2P) database net-
work may be well suited to support dynamic distributed
database search, for example for service discovery. The
overall P2P idea is as follows. Rather than have a cen-
tralized database, a distributed framework is used where
there exist one or more autonomous database nodes, each
maintaining its own data. Queries are no longer posed to
a central database; instead, they are recursively propa-
gated over the network to some or all database nodes,
and results are collected and send back to the client.

Consequently, we devised the WSDA based Uni-
fied Peer-to-Peer Database Framework (UPDF) [4] and



its associated Peer Database Protocol (PDP) [15], which
are unified in the sense that they allow to express specific
applications for a wide range of data types (typed or un-
typed XML, any MIME type [16]), node topologies (e.g.
ring, tree, graph), query languages (e.g. XQuery, SQL),
query response modes (e.g. Routed, Direct and Referral
Response) and pipelining characteristics. In the UPDF
framework, an originator sends a query to an agent node,
which evaluates it, and forwards it to select neighbor
nodes.

A link topology describes the link structure among
nodes. For example, in a worldwide service discovery
system, a link topology can tie together a distributed set
of administrative domains, each hosting a registry node
holding descriptions of services local to the domain. Sev-
eral link topology models covering the spectrum from
centralized models to fine-grained fully distributed mod-
els can be envisaged, among them single node, star, ring,
tree, semi hierarchical as well as graph models. Figure 1
depicts some example topologies.

Figure 1. Example Link Topologies [17].

In this paper, we answer the following questions:

� How can a maximum of results be delivered reliably
within the time frame desired by a user, even if a
query type does not support pipelining? How can
loops be detected reliably using timeouts? How can
flexible neighbor selection policies be used to ex-
ploit topology characteristics in answering a query?

Non-pipelining delivery without a dynamic abort
timeout feature is highly unreliable due to the so-called
simultaneous abort problem: If only one of the many
nodes in the query path fails to be responsive for what-
ever reasons, all other nodes in the chain are waiting,
eventually time out at the same time, and the originator
receives not even a single result. To address the problem,
we propose dynamic abort timeouts using as policy expo-
nential decay with halving. This ensures that a maximum
of results can be delivered reliably within the time frame
desired by a user. A dynamic timeout is unsuitable to be
used as loop timeout, due to the non-simultaneous loop
timeout problem. A loop timeout must be static.

A node forwards a query to the set of nodes ob-
tained from neighbor selection. The best neighbor selec-
tion policy to adopt depends on the context of the query
and the topology. For example, a query may only se-
lect neighbors that meet minimum requirements in terms

of latency and bandwidth. Using neighbor selection ex-
plicit topology characteristics can be exploited in query
guidance. For flexibility and expressiveness, we propose
to allow the user to specify the selection policy. In ad-
dition to the normal query, the user defines a neighbor
selection query (XQuery) that takes the tuple set of the
current node as input and returns a subset that indicates
the nodes selected for forwarding. A wide range of poli-
cies can be implemented in this manner. The neighbor
selection policy can draw from the rich set of informa-
tion contained in the tuples published to the node.

This paper is organized as follows. Section 2. de-
scribes timeouts for loop detection in query routes and
for query abort. Section 3. discusses flexible neighbor
selection policies. Section 4. compares our work with
existing research results. Finally, Section 5. concludes
this paper.

2. Loop and Abort Timeout

Clearly there comes a time when a user is no longer in-
terested in query results, no matter whether any more re-
sults might be available. The query roaming the network
and its response traffic should fade away after some time.
In addition, P2P systems are well advised to attempt to
limit resource consumption by defending against run-
away queries roaming forever or producing gigantic re-
sult sets, either unintended or malicious. To address
these problems, an absolute abort timeout is attached to
a query, as it travels across hops. An abort timeout can
be seen as a deadline. Together with the query, a node
tells a neighbor “I will ignore (the rest of) your result
set if I have not received it before 12:00:00 today.” The
problem, then, is to ensure that a maximum of results can
be delivered reliably within the time frame desired by a
user.

The value of a static timeout remains unchanged
across hops, except for defensive modification in flight
triggered by runaway query detection (e.g. infinite time-
out). In contrast, it is intended that the value of a dy-
namic timeout be decreased at each hop. Nodes further
away from the originator may time out earlier than nodes
closer to the originator.

2.1 Dynamic Abort Timeout

A static abort timeout is entirely unsuitable for non-
pipelined result set delivery, because it leads to a serious
reliability problem, which we propose to call simultane-
ous abort timeout. If just one of the many nodes in the
query path fails to be responsive for whatever reasons, all
other nodes in the path are waiting, eventually time out
and attempt to return at least a partial result set. How-
ever, it is impossible that any of these partial results ever
reach the originator, because all nodes time out simulta-
neously (and it takes some time for results to flow back).
For example, the agent times out and attempts to return
its local partial results to the originator. After that, all
partial results flowing to the agent from neighbors, and
their neighbors, etc. are discarded – it is already too



late. However, even the agent cannot deliver results to
the originator because the originator has already timed
out (shortly) before the results arrive. Hence, the origi-
nator receives not even a single result if just one of the
many nodes in the query path fails to be responsive.

To address the simultaneous abort timeout problem,
we propose dynamic abort timeouts. Under dynamic
abort timeout, nodes do not time out at the same time.
Instead, nodes further away from the originator time out
earlier than nodes closer to the originator. This provides
some safety time window for the partial results of any
node to flow back across multiple hops to the origina-
tor. Together with the query, a node tells a neighbor “I
will ignore (the rest of) your result set if I have not re-
ceived it before 12:00:00 today. Do whatever you think
is appropriate to meet this deadline”. Intermediate nodes
can and should adaptively decrease the timeout value as
necessary, in order to leave a large enough time window
for receiving and returning partial results subsequent to
timeout.

Observe that the closer a node is to the originator,
the more important it is (because if it cannot meet its
deadline, results from a large branch are discarded). Fur-
ther, the closer a node is to the originator, the larger is its
response and bandwidth consumption. Thus, as a good
policy to choose the safety time window, we propose ex-
ponential decay with halving. The window size is halved
at each hop, leaving large safety windows for important
nodes and tiny window sizes for nodes that contribute
only marginal result sets. Also, taking into account net-
work latency and the time it takes for a query to be locally
processed, the timeout is updated at each hop N accord-
ing to the following recurrence formula:

�������	�	
��������
��	�	�������	��� �������	�	
�� ������� ��
��	�	������� ��
(1)

Consider for example Figure 2. At time t the orig-
inator submits a query with a dynamic abort timeout of
t+4 seconds. In other words, it warns the agent to ig-
nore results after time t+4. The agent in turn intends to
safely meet the deadline and so figures that it needs to
retain a safety window of 2 seconds, already starting to
return its (partial) results at time t+2. The agent warns
its own neighbors to ignore results after time t+2. The
neighbors also intend to safely meet the deadline. From
the 2 seconds available, they choose to allocate 1 second,

10
9

4

2

3

1

85

76

t+4

t+2

t+1

t+0.5

Query
Result set

Node

Originator

Agent Node

Figure 2. Dynamic Abort Timeout.

and leave the rest to the branch remaining above. Even-
tually, the safety window becomes so small that a node
can no longer meet a deadline on timeout. The results
from the unlucky node are ignored, and its partial results
are discarded. However, other nodes below and in other
branches are unaffected. Their results survive and have
enough time to hop all the way back to the originator be-
fore time t+4.

Instead of ignoring results which miss their dead-
line a node may also close the connection. This may,
but need not, be harmless. The connection is typically
simply reestablished as soon as a new query is to be for-
warded. However, in an attempt to educate good P2P
citizens, a node may choose to stop propagating or deny
service to neighbors that repeatedly do not meet abort
deadlines. For example, a strategy may use an exponen-
tial back-off algorithm. Note that as long as a node obeys
its timeout it can independently implement any timeout
policy it sees fit for its purposes without regard to the pol-
icy implemented at other nodes. If a node misbehaves or
maliciously increases the abort timeout, it risks not being
able to meet its own deadline, and is likely soon dropped
or denied service. Such healthy measures move less use-
ful nodes to the edge of the network where they cause
less harm, because their number of topology links tends
to decrease.

To summarize, under non-pipelined result set deliv-
ery, dynamic abort timeouts using exponential decay with
halving ensure that a maximum of results can be deliv-
ered reliably within the time frame desired by a user. We
speculate that dynamic timeouts could also incorporate
sophisticated cost functions involving latency and band-
width estimation and/or economic models.

2.2 Static Loop Timeout

Interestingly, a static loop timeout is required in order to
fully preserve query semantics. A dynamic timeout (e.g.
the dynamic abort timeout) is unsuitable to be used as
loop timeout. Otherwise, a problem arises that we pro-
pose to call non-simultaneous loop timeout. The same
query may arrive at a node multiple times, along distinct
routes, perhaps in a complex pattern. Loops in query
routes must be detected and prevented. Otherwise, un-
necessary or endless multiplication of workloads would
be caused. To this end, a node maintains a state table
of recent transaction identifiers and associated loop time-
outs and returns an error whenever a query is received
that has already been seen (according to the state table).
Before the loop timeout is reached, the same query can
potentially arrive multiple times, along distinct routes.
On loop timeout, a node may “forget” about a query by
deleting it from the state table. To be able to reliably de-
tect a loop, a node must not forget a transaction identifier
before its loop timeout has been reached.

However, let us assume for the moment that a dy-
namic timeout (e.g. the dynamic abort timeout) is used
as loop timeout. Consider for example, Figure 3, which
is identical to Figure 2 except that the agent has an ad-
ditional neighbor that can potentially receive the query
along more than one path. At time t the originator sub-



mits a query with a dynamic abort timeout of t+4 sec-
onds. The agent in turn warns its own neighbors to ignore
results after time t+2. Request 5 is sent and arrives, is
processed, and its results (step 8) are delivered before
the dynamic abort timeout of time t+1. At time t+1
the loop timeout is reached and the query is deleted from
the state table. For many reasons, including temporary
network segment problems and sequential neighbor pro-
cessing, request 10 can be delayed. In the example it ar-
rives after time t+1. By this time, the receiving node has
already forgotten that it already handled the very same
query. Hence, the node cannot detect the loop and contin-
ues to process and forward (step 11, 12) the same query
again.

Query
Result set

Node

Originator

Agent Node

14
9

4

2

3

1

85

76

t+4

t+2

t+1

t+0.5

arrives at
t+1.5

returns at
t+1.8

10

13

t+1.75
11 12

Figure 3. Loop Detection Failure with Dynamic Loop
Timeout.

The non-simultaneous loop timeout problem is
caused by the fact that some nodes still forward the query
to other nodes when the destinations have already for-
gotten it. In other words, the problem is that loop time-
out does not occur simultaneously everywhere. Conse-
quently, a loop timeout must be static (does not change
across hops) to guarantee that loops can reliably be de-
tected. Along with a query, an originator not only pro-
vides a dynamic abort timeout, but also a static loop time-
out. Initially at the originator, both values must be iden-
tical (e.g. t+4). After the first hop, both values become
unrelated.

To summarize, we have abort timeout �
loop timeout. Loop timeouts must be static
whereas abort timeouts may be static or dynamic. Under
non-pipelined result set delivery, dynamic abort timeouts
using exponential decay with halving ensure that a max-
imum of results can be delivered reliably within the time
frame desired by a user. A dynamic abort timeout model
still requires static loop timeouts to ensure reliable loop
detection, so that a node does not forward and answer the
same query multiple times.

3. Neighbor Selection Query

For simplicity, all our discussions so far have implicitly
assumed a broadcast model (on top of TCP) in which a
node forwards a query to all neighbor nodes. However,
in general one can select a subset of neighbors, and for-
ward concurrently or sequentially. Fewer query forwards
lead to less overall resource consumption. The issue is
critical because of the snowballing (epidemic, flooding)

effect implied by broadcasting. Overall bandwidth con-
sumption grows exponentially with the query radius, pro-
ducing enormous stress on the network and drastically
limiting its scalability. For details, consult [18, 19].

Clearly selecting a neighbor subset can lead to in-
complete coverage, missing important results. The best
policy to adopt depends on the context of the query and
the topology. Context is required to improve on the
broadcast model. For example, it makes little sense to
forward a Gnutella query to non-Gnutella nodes. The
scope can select only neighbors with a service descrip-
tion of interface type “Gnutella”. In an attempt to explic-
itly exploit topology characteristics, a virtual organiza-
tion of a Grid may deliberately organize global, interme-
diate and local job schedulers into a tree-like topology.
Correct operation of scheduling may require reliable dis-
covery of all or at least most relevant schedulers in the
tree. In such a scenario, random selection of half of the
neighbors at each node is certainly undesirable. A policy
that selects all child nodes and ignores all parent
nodes may be more adequate.

Further, a node may maintain statistics about
its neighbors. One may only select neighbors that
meet minimum requirements in terms of latency, band-
width or historic query outcomes (maxLatency,
minBandwidth, minHistoricResult). Other
node properties such as hostname, domain name, owner,
etc. can be exploited in query scope guidance, for exam-
ple to implement security policies. Consider an example
where the scheduling system may only trust nodes from a
select number of security domains. Here a query should
never be forwarded to nodes not matching the trust pat-
tern.

Further, in some systems, finding a single result
is sufficient. In general, a user or any given node can
guard against unnecessarily large result sets, message
sizes and resource consumption by specifying the maxi-
mum number of result tuples (maxResults) and bytes
(maxResultsBytes) to be returned. Using sequen-
tial propagation, depending on the number of results al-
ready obtained from the local database and a subset of
the selected neighbors, the query may no longer need to
be forwarded to the rest of the selected neighbors.

For maximum result set size limiting, a timeout
and/or radius can be used in conjunction with neighbor
selection, routed response, and perhaps sequential for-
ward, to implement the expanding ring [20] strategy. The
term stems from IP multicasting. Here an agent first for-
wards the query to a small radius/timeout. Unless enough
results are found, the agent forwards the query again with
increasingly large radius/timeout values to reach further
into the network, at the expense of increasingly large
overall resource consumption. On each expansion ra-
dius/timeout are multiplied by some factor.

For flexibility and expressiveness, we propose to al-
low the user to specify the selection policy. In addition
to the normal query, the user defines a neighbor selec-
tion query (XQuery) that takes the tuple set of the current
node as input and returns a subset that indicates the nodes
selected for forwarding. For example, a neighbor query



implementing broadcasting selects all services with reg-
istry and P2P query capabilities, as follows:

RETURN /tupleset/tuple[@type="service"
AND content/service/interface[@type="Consumer"]
AND content/service/interface[@type="XQuery"]]

A wide range of policies can be implemented in this
manner. The neighbor selection policy can draw from
the rich set of information contained in the tuples pub-
lished to the node. Further, recall that the set of tuples
in a database may not only contain service descriptions
of neighbor nodes (e.g. in WSDL [21]), but also other
kind of (soft state) content published from any kind of
content provider. For example, this may include the type
of queries neighbor nodes can answer, descriptions of the
kind of tuples they hold (e.g. their types), or a compact
summary or index of their content. Content available to
the neighbor selection query may also include host and
network information as well as statistics that a node peri-
odically publishes to its immediate neighbors. A neigh-
bor selection query enables group communication to all
nodes with certain characteristics (e.g. the same group
ID or interfaces). One can implement domain filters and
security filters (e.g. allow/deny regular expressions
as used in the Apache HTTP server if the tuple set in-
cludes metadata such as hostname and node owner. To
summarize, a neighbor selection query can be used to
implement smart dynamic routing.

As usual, for security reasons, a node may choose
to ignore, override or extend any scope hints it receives.
The neighbor query concept can also be used for flexible
policy implementation internal to a node. In this case,
a node always ignores the user provided neighbor query
and uses an internal custom neighbor selection query in-
stead.

4. Related Work

Radius. The radius of a query is a measure of path
length. More precisely, it is the maximum number of
hops a query is allowed to travel on any given path. The
radius is decreased by one at each hop. The roaming
query and response traffic must fade away upon reaching
a radius of less than zero. The radius helps to limit la-
tency and bandwidth consumption and to guard against
runaway queries with infinite lifetime. In Gnutella [1]
and Freenet [2], the radius is the primary means to spec-
ify a query scope. The radius is termed TTL (time-to-live)
in these systems. Neither of these systems support time-
outs and flexible neighbor selection.

Loop Detection. The X.500 protocol [22] uses a
route-tracing algorithm for loop detection. This algo-
rithm only works for queries that select on a name from
a hierarchical name space that is mimicked by the link
topology. In our general context, the algorithm is insuffi-
cient for loop detection because we allow, but do not as-
sume, such a topology and namespace. The route-tracing
algorithm attaches to a query the route already taken, rep-
resented by a list of node identifiers. On query forward, a
node N appends its own identifier to the route. A loop is
detected if the identifier of the current node N is already

contained in the route. This mechanism only detects a
loop if a query forwarded by a given node N eventually
arrives again at the same node N. It cannot detect the
more common form of loop where the same query ar-
rives along multiple paths at a given node N, but none of
the paths have so far touched N.

Neighbor Selection. Iterative deepening [23] is a
similar technique to expanding ring where an optimiza-
tion is suggested that avoids reevaluating the query at
nodes that have already done so in previous iterations.
Neighbor selection policies that are based on randomness
and/or historical information about the result set size of
prior queries are simulated and analyzed in [24]. An ef-
ficient neighbor selection policy is applicable to simple
queries posed to networks in which the number of links
of nodes exhibits a power law distribution (e.g. Freenet
and Gnutella) [25]. Here most (but not all) matching re-
sults can be reached with few hops by selecting just a
very small subset of neighbors (the neighbors that them-
selves have the most neighbors to the n-th radius). Note,
however, that the policy is based on the assumption that
not all results must be found and that all query results
are equally relevant. Depending on the application con-
text, this assumption may or may not be valid. These re-
lated works discuss in isolation neighbor selection tech-
niques for a particular query type, without the context of
a framework for comprehensive query support.

DNS. Distributed databases with a hierarchical
name space such as the Domain Name System (DNS)
[26] can efficiently answer queries of the form “Find an
object by its full name”. These systems arrange the link
topology, according to the hierarchical name space, as a
tree topology. A query searching for the IP address of a
domain name traverses the tree on the shortest path from
originator to the node containing the domain name - first
up, then down. At each node, a name resolution policy
selects the neighbor “closer” to the name than the cur-
rent node, according to name space metadata. In DNS,
queries are not forwarded (routed) through the topology.
Instead, a node returns a referral message that redirects
an originator to the next closer node. The originator ex-
plicitly queries the next node, is referred to yet another
closer node, and so on. The DNS referral behavior can
be implemented within our framework by using a radius
scope of zero. The same holds for the LDAP referral be-
havior (see below).

X.500, LDAP and MDS. The hierarchical dis-
tributed X.500 directory [22] works similarly to the DNS.
It also supports referrals, but in addition can forward
queries through the topology (chaining in X.500 termi-
nology). The query language is simple [4]. Route trac-
ing is used as a loop detection algorithm. Query scope
specification can support maximum result set size limit-
ing. It does not support radius and dynamic abort time-
out as well as pipelined query execution across nodes.
LDAP [27] is a simplified subset of X.500. Like DNS, it
supports referrals but not query forwarding. The Meta-
computing Directory Service (MDS) [28, 29] inherits
all properties of LDAP. MDS additionally implements a
simple form of query forwarding that allows for multi-
level hierarchies but not for arbitrary topologies. Here



neighbor selection forwards the query to LDAP servers
overlapping with the query name space. The query
is forwarded “as is”, without loop detection. Further,
MDS does not support radius and dynamic abort time-
out, pipelined query execution across nodes as well as
direct response and metadata responses.

5. Conclusions

There comes a time when a user is no longer interested in
query results, no matter whether any more results might
be available. The query roaming the network and its re-
sponse traffic should fade away after some time. The
value of a static timeout remains unchanged across hops.
In contrast, it is intended that the value of a dynamic time-
out be decreased at each hop. Nodes further away from
the originator may time out earlier than nodes closer to
the originator. Non-pipelined delivery with a static abort
timeout is highly unreliable due to the so-called simul-
taneous abort timeout problem. To address the problem,
we propose dynamic abort timeouts using as policy expo-
nential decay with halving. This ensures that a maximum
of results can be delivered reliably within the time frame
desired by a user. A dynamic timeout is unsuitable to be
used as loop timeout, due to the non-simultaneous loop
timeout problem. A loop timeout must be static.

A query scope is used to navigate and prune the
link topology and filter on attributes of the deployment
model. Conceptually, the scope is the input fed to the
query. One can indirectly specify a scope based on neigh-
bor selection, timeout, radius and result set properties. A
node forwards a query to the set of nodes obtained from
neighbor selection. The best neighbor selection policy to
adopt depends on the context of the query and the topol-
ogy. For example, a query may only select neighbors
that meet minimum requirements in terms of latency and
bandwidth. Using neighbor selection explicit topology
characteristics can be exploited in query guidance. For
flexibility and expressiveness, we propose to allow the
user to specify the selection policy. In addition to the
normal query, the user defines a neighbor selection query
(XQuery) that takes the tuple set of the current node as
input and returns a subset that indicates the nodes se-
lected for forwarding. A wide range of policies can be
implemented in this manner. The neighbor selection pol-
icy can draw from the rich set of information contained
in the tuples published to the node.

References
[1] Gnutella Community. Gnutella Protocol Specification v0.4.

dss.clip2.com/GnutellaProtocol04.pdf.

[2] I. Clarke, O. Sandberg, B. Wiley, and T. Hong. Freenet: A dis-
tributed anonymous information storage and retrieval system. In
Workshop on Design Issues in Anonymity and Unobservability,
2000.

[3] Ian Foster, Carl Kesselman, and Steve Tuecke. The Anatomy of
the Grid: Enabling Scalable Virtual Organizations. Int’l. Journal
of Supercomputer Applications, 15(3), 2001.

[4] Wolfgang Hoschek. A Unified Peer-to-Peer Database Framework
for XQueries over Dynamic Distributed Content and its Applica-
tion for Scalable Service Discovery. PhD Thesis, Technical Uni-
versity of Vienna, March 2002.

[5] Ben Segal. Grid Computing: The European Data Grid Project. In
IEEE Nuclear Science Symposium and Medical Imaging Confer-
ence, Lyon, France, October 2000.

[6] Wolfgang Hoschek, Javier Jaen-Martinez, Asad Samar, Heinz
Stockinger, and Kurt Stockinger. Data Management in an Inter-
national Data Grid Project. In 1st IEEE/ACM Int’l. Workshop on
Grid Computing (Grid’2000), Bangalore, India, December 2000.

[7] Large Hadron Collider Committee. Report of the LHC
Computing Review. Technical report, CERN/LHCC/2001-
004, April 2001. http://cern.ch/lhc-computing-review-
public/Public/Report final.PDF.

[8] Ian Foster, Carl Kesselman, Jeffrey Nick, and Steve Tuecke.
The Physiology of the Grid: An Open Grid Services Ar-
chitecture for Distributed Systems Integration, January 2002.
http://www.globus.org.

[9] P. Cauldwell, R. Chawla, Vivek Chopra, Gary Damschen, Chris
Dix, Tony Hong, Francis Norton, Uche Ogbuji, Glenn Olander,
Mark A. Richman, Kristy Saunders, and Zoran Zaev. Profes-
sional XML Web Services. Wrox Press, 2001.

[10] Wolfgang Hoschek. The Web Service Discovery Architecture.
In Proc. of the Int’l. IEEE/ACM Supercomputing Conference (SC
2002), Baltimore, USA, November 2002. IEEE Computer Soci-
ety Press.

[11] Wolfgang Hoschek. A Data Model and Query Language for Ser-
vice Discovery. Technical report, DataGrid-02-TED-0409, April
2002.

[12] World Wide Web Consortium. XQuery 1.0: An XML Query Lan-
guage. W3C Working Draft, December 2001.

[13] International Organization for Standardization (ISO). Infor-
mation Technology-Database Language SQL. Standard No.
ISO/IEC 9075:1999, 1999.

[14] Wolfgang Hoschek. A Database for Dynamic Distributed Content
and its Application for Service and Resource Discovery. In Int’l.
IEEE Symposium on Parallel and Distributed Computing (ISPDC
2002), Iasi, Romania, July 2002.

[15] Wolfgang Hoschek. A Unified Peer-to-Peer Database Protocol.
Technical report, DataGrid-02-TED-0407, April 2002.

[16] N. Freed and N. Borenstein. Multipurpose Internet Mail Ex-
tensions (MIME) Part One: Format of Internet Message Bodies.
IETF RFC 2045, November 1996.

[17] Nelson Minar. Peer-to-Peer is Not Always Decentralized. In The
O’Reilly Peer-to-Peer and Web Services Conference, Washington,
D.C., November 2001.

[18] Jordan Ritter. Why Gnutella Can’t Scale. No, Really.
http://www.tch.org/gnutella.html.

[19] Matei Ripeanu. Peer-to-Peer Architecture Case Study: Gnutella
Network. In Int’l. Conf. on Peer-to-Peer Computing (P2P2001),
Linkoping, Sweden, August 2001.

[20] S.E. Deering. Multicast Routing in a Datagram Internetwork.
PhD Thesis, Stanford University, 1991.

[21] E. Christensen, F. Curbera, G. Meredith, and S. Weerawarana.
Web Services Description Language (WSDL) 1.1. W3C Note 15,
2001. http://www.w3.org/TR/wsdl.

[22] International Telecommunications Union. Recommendation
X.500, Information technology – Open System Interconnection –
The directory: Overview of concepts, models, and services. ITU-
T, November 1995.

[23] Beverly Yang and Hector Garcia-Molina. Efficient Search in
Peer-to-Peer Networks. In 22nd Int’l. Conf. on Distributed Com-
puting Systems, Vienna, Austria, July 2002.

[24] Adriana Iamnitchi and Ian Foster. On Fully Decentralized Re-
source Discovery in Grid Environments. In Int’l. IEEE Workshop
on Grid Computing, Denver, Colorado, November 2001.

[25] L. Adamic, R. Lukose, A. Puniyani, and B. Huberman. Search in
power-law networks. Phys. Rev, E(64), 2001.

[26] P. Mockapetris. Domain Names - Implementation and Specifica-
tion. IETF RFC 1035, November 1987.

[27] W. Yeong, T. Howes, and S. Kille. Lightweight Directory Access
Protocol. IETF RFC 1777, March 1995.



[28] Karl Czajkowski, Steven Fitzgerald, Ian Foster, and Carl Kessel-
man. Grid Information Services for Distributed Resource Shar-
ing. In Tenth IEEE Int’l. Symposium on High-Performance Dis-
tributed Computing (HPDC-10), San Francisco, California, Au-
gust 2001.

[29] Steven Fitzgerald, Ian Foster, Carl Kesselman, Gregor von
Laszewski, Warren Smith, and Steven Tuecke. A Directory
Service for Configuring High-Performance Distributed Computa-
tions. In 6th Int’l. Symposium on High Performance Distributed
Computing (HPDC ’97), 1997.


